Russian Chinese (Simplified) English French German Japanese Spanish

 

     Связаться с нами: +7 (499) 347-19-95                                                                  sales@touchtechn.ru

 

Многообразие сенсорных дисплеев PDF  | Печать |
Сергей Асмаков

Количество разнообразных электронных устройств, оснащенных сенсорными дисплеями, увеличивается с каждым годом. Однако не все сенсорные экраны одинаковы. В настоящее время существует несколько вариантов реализации таких решений. В этой статье мы рассмотрим особенности и сферу применения различных технологий, используемых для создания сенсорных дисплеев.
Возможно, в это трудно поверить, но история сенсорных дисплеев началась почти четыре десятилетия тому назад. В далеком 1971 году сотрудник Университета Кентукки Сэм Хёрст (Sam Hurst) сконструировал сенсорную панель, которая была запатентована под названием «илограф» (elograph). Для разработки и продвижения устройств подобного типа Сэм Хёрст основал компанию Elographics. В 1974 году ее сотрудникам удалось создать прототип дисплея, оснащенного прозрачной сенсорной панелью. В 1977 году компания Elographics получила патент на конструкцию пятипроводной резистивной сенсорной панели — решения, которое и спустя более трех десятков лет остается весьма популярным. Компания работает до сих пор, правда уже под другим названием: в 1994 году она была переименована в Elo TouchSystems, а впоследствии вошла в состав холдинга Tyco Electronics
На этом мы завершим краткий исторический экскурс и перейдем к рассмотрению различных решений, позволяющих реализовать функцию сенсорного ввода.

Резистивная технология

Обзор открывает резистивная технология. По большому счету именно она способствовала нынешней популярности портативных электронных устройств с сенсорными экранами. Даже несмотря на появление более совершенных конструкций, резистивная технология до сих занимает лидирующие позиции на рынке сенсорных панелей. Согласно данным аналитического агентства DisplaySearch, по итогам 2009 года доля сенсорных панелей на базе резистивной технологии в количественном выражении составила 50% от общего объема мировых поставок.

В настоящее время существуют два основных варианта реализации резистивных сенсорных панелей — четырех и пятипроводные.

Сначала рассмотрим принцип работы резистивной панели на базе четырехпроводной технологии. Над стеклянной или пластиковой подложкой расположена тонкая, гибкая мембрана, изготовленная из прозрачного материала. Обращенные друг к другу поверхности мембраны и подложки имеют прозрачное покрытие, проводящее электрический ток. Соприкосновению мембраны с подложкой препятствуют миниатюрные изоляторы, находящиеся между ними. К подложке и мембране прикреплены пары металлических электродов, расположенные на противолежащих сторонах (рис. 1). При этом электроды мембраны размещены перпендикулярно электродам подложки.





Рис. 1. Схема устройства четырехпроводной резистивной панели

При нажатии на поверхность сенсорного экрана мембрана в этом месте соприкасается с подложкой, вследствие чего возникает электрический контакт между проводящими слоями (рис. 2). Считывание координат точки нажатия выполняется последовательно. Сначала один из электродов подложки подключается к источнику постоянного тока, а другой заземляется. Электроды мембраны соединяются накоротко (рис. 3), и контроллер измеряет напряжение на них, определяя таким образом одну из координат (в данном случае — горизонтальную). Затем ток подается на электроды мембраны, и контроллер измеряет напряжение на соединенных электродах подложки, фиксируя вторую координату.





Рис. 2. При нажатии мембрана прогибается и замыкается с подложкой в точке касания



Рис. 3. Считывание горизонтальной (сверху) и вертикальной координат точки нажатия с четырехпроводной резистивной панели

В случае пятипроводной панели электроды устанавливаются на каждой из сторон подложки, а пятый подключается к мембране (рис. 4). При нажатии мембрана соприкасается с подложкой; контроллер поочередно подает постоянное напряжение на пары электродов, соответствующих горизонтальной и вертикальной оси (рис. 5). По величине напряжения на электроде, подключенном к мембране, контроллер определяет координаты точки нажатия.





Рис. 4. Схема устройства пятипроводной резистивной панели



Рис. 5. Электрическая схема считывания горизонтальной (сверху) и вертикальной координат точки нажатия с пятипроводной резистивной панели

Существует также восьмипроводная технология (в этом случае электроды крепятся к каждой из четырех сторон подложки и мембраны), однако используется такое решение довольно редко вследствие более высокой стоимости.

Сенсорные панели на базе резистивной технологии имеют простое устройство и низкую себестоимость — именно этими факторами и обусловлена популярность подобных решений. Кроме того, резистивные панели реагируют исключительно на давление, оказываемое предметом на сенсорную поверхность. Благодаря этому управлять интерфейсом можно при помощи как пальцев (в том числе и в перчатках), так и разнообразных предметов — стилуса, спички и пр. Такие панели отличаются малой задержкой срабатывания (порядка 10 мс) и сохраняют работоспособность даже при наличии разного рода загрязнений на сенсорной поверхности. Отметим также, что возможно изготовление резистивных сенсорных панелей как с глянцевым, так и с матовым покрытием. Первые обеспечивают более высокую четкость изображения, но при этом сильно бликуют, а при нажатии на сенсорную поверхность пальцами к тому же быстро теряют опрятный вид. Матовое покрытие эффективно нейтрализует блики и на нем не так заметны отпечатки пальцев. Правда, изображение в этом случае выглядит менее четким и контрастным.

Если говорить о различиях четырех и пятипроводной технологий, то первая выигрывает по себестоимости, а вторая обеспечивает более высокий ресурс (до десятков миллионов нажатий в одной точке). Восьмипроводная технология обеспечивает более высокую точность определения координат точки нажатия, однако, как уже было сказано, производство таких панелей обходится гораздо дороже по сравнению с четырех и пятипроводными конструкциями.

Разумеется, у резистивных панелей есть и определенные недостатки. Они в большей степени, чем иные конструкции, подвержены механическим повреждениям — ведь для срабатывания необходимо приложить определенное усилие и здесь легко переборщить. Наиболее уязвимым элементом конструкции является гибкая мембрана, регулярно подвергающаяся деформациям. При нарушении целостности мембраны (появлении надрыва или пореза) панель выходит из строя.

Резистивные панели уступают ряду устройств по точности определения координат точки нажатия и к тому же требуют периодической перекалибровки. Даже лучшие образцы резистивных панелей имеют коэффициент светопропускания порядка 85%, снижая, таким образом, исходные показатели яркости и контрастности изображения. Вследствие наличия между экраном дисплея и наблюдателем нескольких поверхностей (подложка, мембрана и защитный слой), использование резистивной сенсорной панели неизбежно приводит к ухудшению четкости изображения (данный недостаток в большей степени присущ конструкциям с матовым покрытием).

До недавнего времени к недостаткам экранов на базе резистивной технологии относили невозможность восприятия нажатия в нескольких точках одновременно. Однако благодаря новейшим разработкам это ограничение удалось преодолеть. Например, продемонстрированные в ходе форума SID 2010 резистивные сенсорные панели компании Fujitsu Components America способны воспринимать до 32 нажатий в разных точках экрана одновременно.

В настоящее время сенсорные экраны на базе резистивной технологии широко применяются в КПК, мобильных телефонах, портативных медиаплеерах, POS-терминалах, а также в промышленном и медицинском оборудовании.

Емкостная технология

Уже довольно давно ученые выяснили, что с точки зрения электротехники человеческое тело является конденсатором, причем довольно большой емкости. Именно это свойство нашего тела используется в сенсорных экранах на базе емкостной или, как ее еще иногда называют, электростатической технологии.

Сенсорная панель данного типа изготавливается на прозрачной (стеклянной либо пластиковой) подложке. Внешняя поверхность пластины покрыта проводящим слоем, а в каждом из четырех ее углов закреплен электрод, подключенный к контроллеру (рис. 6). В процессе работы контроллер подает на электроды импульсы слабого переменного тока. Если прикоснуться пальцем к поверхности сенсорного экрана (подсоединить конденсатор), возникнет утечка тока. Величина тока утечки обратно пропорциональна расстоянию от точки нажатия до электрода. Сравнивая величины тока утечки через каждый из четырех электродов, контроллер рассчитывает координаты точки нажатия.





Рис. 6. Схема устройства емкостной панели

Вследствие отсутствия гибких мембран емкостные панели обладают более высокой надежностью по сравнению с резистивными (ресурс составляет несколько сотен миллионов нажатий). Кроме того, благодаря меньшему количеству оптических элементов емкостные панели обладают более высоким коэффициентом светопропускания (порядка 90%). Основным недостатком панелей этого типа является необходимость обеспечения электрического контакта между поверхностью и телом человека. Например, если нажать на такой экран стилусом из диэлектрического материала или же пальцем в перчатке, то работать он не будет. Кроме того, нормальная работа емкостной панели может быть нарушена при загрязнении поверхности веществами, проводящими электрический ток.

В настоящее время сенсорные панели на базе емкостной технологии используются в дисплеях информационных киосков и банкоматов, а также в промышленном оборудовании.

Проекционно-емкостная технология

На данный момент это решение занимает второе место в рейтинге популярности сенсорных технологий, уступая лишь резистивным панелям. Конструктивно панель на базе проекционноемкостной технологии представляет собой две стеклянные пластины, между которыми находится сетка тонких электродов (рис. 7). В процессе работы контроллер посылает короткие импульсы по каждому из электродов. При нахождении пальца вблизи сенсорной поверхности возникает эффект, аналогичный подключению конденсатора большой емкости (роль которого в данном случае выполняет тело человека) к расположенным поблизости электродам. Измеряя величину падения напряжения (возникающего вследствие утечки тока через конденсатор), контроллер определяет координаты точки касания.





Рис. 7. Схема устройства проекционно-емкостной панели

Сенсорные панели на базе проекционноемкостной технологии имеют целый ряд достоинств, которые способствовали значительному росту их популярности в последние годы. В частности, они долговечны, обладают высоким показателем светопропускания (порядка 90%), стойкостью к загрязнениям и механическим повреждениям рабочей поверхности, способны функционировать в широком диапазоне температур.

Проекционно-емкостная технология способна обеспечить очень высокую точность определения координат точки нажатия, однако здесь необходимо иметь в виду то, что данный параметр напрямую зависит от толщины защитного слоя. Чем он толще, тем меньше точность, и наоборот.

Кроме того, сенсорные панели такого типа позволяют воспринимать нажатия в нескольких точках экрана одновременно. В зависимости от настроек контроллера панель может реагировать не только на прикосновение, но и на поднесенный к рабочей поверхности палец. Соответственно возможно управление рукой в перчатке.

Основной недостаток проекционноемкостных панелей — сложность электронных компонентов для обработки информации о нажатиях, а следовательно, довольно высокая стоимость производства. Кроме того, себестоимость проекционноемкостных панелей заметно растет по мере увеличения размера и разрешающей способности экрана. Перечисленные факторы препятствуют распространению сенсорных панелей данного типа в недорогих устройствах, а также в аппаратах с экранами большого размера.

Проекционно-емкостные панели хорошо справляются с определением точечных нажатий, однако не лучшим образом подходят для реализации функций, связанных с перетаскиванием объектов графического интерфейса или рисованием на экране. Как и в случае резистивных панелей, устройства данного типа нуждаются в периодической перекалибровке.

В настоящее время сенсорные панели на базе проекционноемкостной технологии используются в сотовых телефонах, цифровых медиапле-ерах, информационных киосках и тачпэдах (touchpad) портативных ПК. Популярность этого решения быстро растет. Так, согласно данным агентства DisplaySearch, в минувшем году доля сенсорных панелей на базе проекционноемкостной технологии составила 31% от общего количества поставленных изделий.

Оптические технологии

Отдельную группу сенсорных экранов составляют устройства на базе оптических технологий. Популярность подобных решений пока невысока: по результатам прошлого года доля оптических сенсорных панелей составила всего 3% от общего объема мировых поставок. Впрочем, потенциал подобных устройств раскрыт еще не до конца.

Примечание редакции: далее опустим описание, т.к. информация по этим технологиям есть уже в этом разделе.

Технологии на базе свойств акустических волн

Пока что ни одна из технологий, использующих для реализации функции сенсорного ввода свойства акустических волн, не получила широкого распространения. Тем не менее подобные решения интересны не только оригинальным принципом работы, но и рядом важных достоинств.

Примечание редакции: помимо наиболее распространённой технологии поверхностных акустических волн (ПАВ, или SAW), описанной в соответствующем разделе (поэтому описание здесь её опускаем чтобы не повторяться), существуют также:

Технология распознавания акустических импульсов

Технология распознавания акустических импульсов (Acoustic Pulse Recognition, APR), созданная специалистами компании Elo TouchSystems, является дальнейшим развитием идеи, использованной в панелях на базе ПАВ. Впрочем, принцип работы сенсорных панелей на базе технологии APR существенно отличается от устройств на базе ПАВ.

Сенсорная поверхность представляет собой стеклянную пластину. На ее сторонах установлены четыре пьезоэлектрических преобразователя, конвертирующих распространяющиеся по толще стекла звуковые волны в электрический сигнал (рис. 15).



Рис. 15. Схема устройства сенсорной панели на базе технологии APR

Принцип работы панели APR основан на том, что звук, возникающий при прикосновении к каждой из точек сенсорной поверхности, уникален. При прикосновении к сенсорной поверхности возникает звуковой импульс, распространяющийся по стеклянной панели. Достигнув края панели, импульс воздействует на ПЭП, который преобразует его в электрический сигнал и передает в контроллер. Последний сравнивает поступающие с датчиков сигналы с сохраненными в памяти эталонными сигналами, зафиксированными при прикосновениях к различным точкам панели. При несовпадении звуковой картины с хранящимися в памяти эталонами контроллер не регистрирует нажатие — таким образом реализована эффективная система фильтрации внешних шумов и вибраций.

Сенсорные панели на базе технологии APR обеспечивают более высокую (по сравнению с устройствами на базе ПАВ) точность определения координат точки касания и гораздо меньше подвержены влиянию посторонних шумов и вибраций. Нажатия можно производить как пальцами, так и различными предметами. Такие панели обладают высоким показателем светопропускания (более 90%) и сохраняют работоспособность при наличии царапин и загрязнений на сенсорной поверхности. Сенсорные панели на базе технологии APR обеспечивают высокую стабильность работы и не требуют перекалибровки в процессе эксплуатации. Данное решение отличается хорошей масштабируемостью: его можно использовать в дисплейных панелях как с малым, так и с большим размером экрана.

Сегодня основной сферой применения технологии APR являются цифровые киоски и POS-терминалы. Поставки коммерческих решений с сенсорными дисплеями на базе технологии APR начались сравнительно недавно — в конце 2006 года.

Ультразвуковая технология

Для работы с сенсорным экраном этого типа используется специальное перо, в котором размещены генератор, излучатель ультразвуковых волн и миниатюрный источник питания. На рамке дисплея вблизи от верхних углов экрана смонтированы два датчика, реагирующих на ультразвук (рис. 16). При прикосновении наконечника пера к поверхности экрана срабатывает выключатель, и перо начинает излучать ультразвуковые волны. Контроллер фиксирует время срабатывания каждого из датчиков и по разнице этих значений вычисляет координаты точки касания.





Рис. 16. Схема устройства дисплея с ультразвуковым сенсором

Основными достоинствами этого решения являются простота реализации (не требуется вносить изменения в конструкцию дисплейной панели), низкая себестоимость, а также отсутствие помех, влияющих на качество изображения. Подобная конструкция обладает хорошей масштабируемостью: сенсор такого типа можно использовать с экранами различных размеров (требуется лишь внесение незначительных изменений в программу контроллера).

Основным недостатком является необходимость применения специального пера. Кроме того, данное решение обеспечивает не очень высокую точность определения координат точки нажатия (±0,5 мм) и требует дополнительного пространства для размещения датчиков на рамке вокруг экрана. Таким образом, ультразвуковой сенсор практически непригоден для использования в портативных устройствах.

В качестве примера серийного устройства, оснащенного ультразвуковой системой сенсорного ввода, можно привести выпущенный в начале 2006 года 17-дюймовый ЖК-монитор Samsung SyncMaster 720TD (рис. 17). Датчики сенсора в этой модели были выполнены в виде шайб цилиндрической формы, расположенных в верхних углах рамки монитора.





Рис. 17. ЖК-монитор SyncMaster 720TD оснащен системой сенсорного ввода на базе ультразвуковой технологии

Технология электромагнитного резонанса


В заключение стоит упомянуть технологию электромагнитного резонанса, разработанную компанией Wacom для использования в графических планшетах (дигитайзерах). В 1998 году в продуктовой линейке компании появилась первая модель ЖК-дисплея со встроенным графическим планшетом — Cintiq 18sx. В настоящее время компания Wacom выпускает две серии дисплеев с сенсорным экраном — Cintiq и PL (рис. 18).





Рис. 18. ЖК-дисплей Wacom серии Cintiq, оснащенный встроенным графическим планшетом

Сенсорные панели, созданные на базе технологии электромагнитного резонанса, обеспечивают очень высокую точность позиционирования, а также позволяют получать дополнительную информацию от встроенных датчиков пера — таким образом можно фиксировать силу нажатия, угол наклона, тип наконечника и пр.

Данная конструкция позволяет отслеживать местоположение пера даже в том случае, когда его наконечник находится на расстоянии 1-2 см от рабочей поверхности. Благодаря этому сенсорную панель можно установить под модулем ЖК-дисплея — не ухудшая, таким образом, оптические характеристики дисплея.

Увы, есть и целый ряд недостатков. Сенсорные панели на базе технологии электромагнитного резонанса работают только со специальным пером и требуют периодической калибровки в процессе эксплуатации. Кроме того, в силу сложности конструкции такие изделия довольно дороги в производстве, причем цена значительно возрастает по мере увеличения размера экрана.

Сенсорные панели на базе данной технологии потребляют много электроэнергии и являются источником электромагнитных помех, которые могут нарушить нормальную работу расположенного поблизости беспроводного оборудования (мобильных телефонов, точек доступа и пр.).

Судя по всему, в ближайшие годы технология электромагнитного резонанса так и останется решением, ориентированным главным образом на немногочисленный сегмент дорогих сенсорных дисплеев, используемых для работы с профессиональными приложениями (графическими редакторами, системами 3D-моделирования, САПР и т.д.).

Источник

 
На главную

Зайти на сайт







Кабельные системы

Кабельно-измерительное и поисковое оборудование для эксплуатации, обслуживания, диагностирования и ремонта кабельных сетей:  выбор товараконсультация

Сейчас 19272 гостей и 1 пользователь онлайн
KeeTouch сенсорный экран 10.4" резистивный 5-ти пров. 229*174 мм KeeTouch сенсорный экран 10.4" резистивный 5-ти пров. 229*174 мм
0 stars
Розничная цена 265 USD (1 шт), 255 USD (2-4 шт), 240 USD (5 шт), оптом 224 USD (10 шт) и 195 USD от 50 шт.
KeeTouch сенсорный экран 6.5" резистивный 4-х пров., шлейф 80.7 KeeTouch сенсорный экран 6.5" резистивный 4-х пров., шлейф 80.7
0 stars
Розничная цена 210 USD (1 шт), 190 USD (2-4 шт), 170 USD (5 шт), оптом 150 USD (10 шт) и 120 USD от 50 шт.
ZaagTech сенсорная рамка 27", multi-touch 6 касаний ZaagTech сенсорная рамка 27", multi-touch 6 касаний
0 stars
Розничная цена 430 USD (1-4 шт), оптом 390 USD (5-19 шт) и 350 USD от 20 шт.
Сенсорное стекло ZYPOS 20.1" Сенсорное стекло ZYPOS 20.1"
0 stars
Розничная цена 205 EUR (1-9 шт), оптом 191 EUR (10-49 шт) и 170 EUR от 50 шт.

                                                     

 При использовании материалов сайта, ссылка на www.touchtechn.ru обязательна. Все права защищены © 2013-2020 ООО "НПП Тачскрин технологии" 

                                                                                  Частичное или полное копирование материала, размещенного на сайте, без нашего согласия запрещено.